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ABSTRACT

The problem of one dimensional plane wave propagation
is considered in isotropic, nonlinear, hysteretic materials.
Solutions for surface loads of step pressure and/or shear,
in cases of loading or unloading are studied, and the presence

of shocks and regions of continuous stress change are discussed.

The mathematical models used are a generalization of
conventional elastic models. The moduli K are assumed to be
functions of the stress invariant Jl , and the moduli G are
functions of both Jl and the stress deviators., Different

expressions for K and G are used during loading and unloading,

leading to energy loss through hysteresis.
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LIST OF SYMBOLS )

Shear modulus, shear moduli in loading
and unloading.

Elastic shear modulus, elastic bulk modulus.
Nondimensional shear modulus.

Coefficients used in variable shear moduli,
Eqs. (24) and (25),

Stress invariants,

Bulk modulus, bulk moduli in loading and
unloading.

Nondimensional bulk modulus.

Coefficients used in variable bulk moduli,
Eqs. (22) and (23).

Fractional coefficient.

Stress deviators.

Time.

Nondimensional dependent variable defined
by Eq. (14).

Velocity components in X, ¥, 2 direction,
respectively,

Cartesian coordinates,

Volumetric strain,

Deviatoric strains.

Mass density,

Normal stress components.

Shear stress,.

Differentiation with respect to time.

Differentiation with respect to U,

*)

Other symbols are defined as they appear in the text.
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L INTRODUCTION.

The following is a study of one dimensional wave propagation
of pressure and/or shear for isotropic materials with nonlinear
properties resulting in hysteretic effects. The one dimensional
plane case is considered because it permits easy mathematical
treatment leading to an understanding of the behavior in multi-
dimensional situations. 1In addition, it can be used xs a check
on numerical schemes and gives limiting solutions for two
dimensional situations at high Mach numbers. Solutiors for the
one dimensional problems for the step loads studied exist for
all input combinations of pressure and shear, and are unique,
giving at least a hint that the artificially constructed des-

cription of the material does not lead to absurdities.

The mathematical models used are a generalization of con~
ventional elastic models, the elastic moduli K being now
functions of the first stress invariant J1 , while the moduli G
are functions of the stress invariants Jl and J2 . The functions
K and G differ appropriately during loading and unloading,

leading to energy loss through hysteresis. Following Ref. [1]

the governing volumetric relations for initial loading are

Jy = K p ) gy (1

while for unloading and reloading

Jy = 3KUN(J1) ékk (2)
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\
where
Kyw 2 ¥pp > O (3
# It is noted that Eq. (1) permits determination of J1 as a

function of Ekk , S0 that the equation can be written in the

alternative form J, = 3K € & without ange of meaning.
‘ nati o} 1 kLD( kk) Kk ith chang f meaning
| The alternative form is used for compuiutional convenience in

Ref. [1l] because it results in simple expressioas for the

T

i velocity of compressive shocks.

The deviatoric relations are, for loading and reloading*),

"N

= 4
ij LD (4)

‘ and for unloading
) he \
: 83 ZGUN(Jl s Jz)eij (5
where
> >
GUN - GLD 20 (6)
The choice of shear modulus is based on the sign of J ,

2

> 0, while G, is used for J, < 0.

being used for J ON 2

' G

. LD 2
Note that this paper uses tensile stresses and strains

as positive while Ref. [1) uses compressive stresses and

strains as positive.

*

) Whether GLD or GUN is appropriate to use for the modulus
of reloading is a question still undergoing discussion
and investigation, This peaper assumes tentatively that

GLD is appropriate.

G
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I1 FORMULATION OF THE BASIC ECJATIONS.

To investigate th. propagation of plane waves of either
pressure and/or shear in the material described by Egs. (1)
to (6), consider the half-space shown in Fig. 1, subjected
to a step load consisting of surface stresses on and/or Eo .
Let x, y, 2 be Cartesian coordinates, x in the direction of
propagation of the disturbances, while y and the shear stress
T are in the plane of the page. The symbols &, Vv, w repre-
sent the x, y, 2z components of the velocity, respectively.
The premise of plane waves requires w = 0, and that all

derivatives with respect to y and z vanish.

Designating stress quantities prior to the introduction
of nondimensional variables by 31 ’ EY , etc., and considering
the strains to be small, the constitutive relations have the

same appearance as in conventional linear elasticity,

1l = 1 = _ 84
9% Y1t 26 Sx T 9x (1)
1 = 1 -
9K Jl + 3% sy = 0 (8)
1 = 1 =
5k Y1t 3¢ s, = O (9)
L: 1l
26 ¢ T 7 3x (10)
but K and G are functions of the stress invariants. ©Noting
Ex + Ev + gz = 0, Egs. (7) to (9) combined give
I a8 11
Jy = 3K == (11)

B L v
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The equations of motion are

(3
-1
L]
k=]
[S17-V]
rr)<e

(12)

Y] wI
P

BJl

x

o

Ju
ey (13)

lx

1 <
3 t3x o

@
<

The five differential equations (7) and (10) to (13) in the
five unknowns Ex s 31 , ?, u and v define the problem. The

two equations, (8) and (9), serve solely for the determi-

s
nation of s_and s_ , 8 =§ = - £ y @ trivial relation
y z y z 2

which will not be carried along.

Following a prncedure used in a previous investigation
of plane waves 1in elasto-plastic materials, Ref. [2],
dimensional considerations require that all stresses and
velocities depend on a nondimensional combination of para-

meters and of the variables x and t,
u=vp/6, % (14)

Introduction of the variable U is ccnveniently combined with
the definition of the nondimensional quantities
3 : -
T
1% > 7§ TT@, (13)

(=]
o]
(o]

(16)
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Introducing Eqs. (l4) to {(16) into Egs. (7) and (10) to

(13) yields, after eliminatior of the velocities U and v,

(wé - gyt -0 (17)
48 ' L .
9k Y1 " Sy 7 0 (18)
2

l U 1 1 _

(3 - 3k) Jl + s, = 0 (19)

where primes indicate differentiation with respect to U.
These three differential equations apply in regions of con-
tinuous solution, i.e., provided the derivatives are finite.
The differential equations are linear with respect to the

1
first derivatives Jl , etc., and homogeneous. They thus

[ 1 ’
permit only the solution J, =s_ =T = 0, with J, = constant,

1 X 1
s, = constant, T = constant, unless the determinant of the
coefficients of Eqs. (l7) to (19) vanishes. Noting that
Eq. (17) depends on T, but not on the two other variables,

while Eqs. (18) and (19) do not contain T, the respective

subdeterminants may be considered separately.

Equation (17) leads to the conclusion that T must be

constant in any region, unless

Equations (18) and (19) indicate that S and J, will

1
be constants unless, in the region considered, the determinant

of the coefficients vanishes.

3U2 -3k - 4g = 0 (21)
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While it will be seen in the applications that this does
not actually occur, the possibility of simultaneous variation

of Eqs. (20) and {21) must be allowed for.

The continuous solutions of the differential equations
(17) to (19) do not completely describe the situations which
may be en-ountered. There may be loucations of discontinuities
(shocks) which must be obtained from other considerations. It

is known that materials with a hardening pressure-volume

relation permit (pressure) shocks. For the materials considered

in this study the velocity of such shocks may be obtained by
integrating the stress-strain relations in uniaxial strain.
In principle, shear shocks are also possible, but such shocks
do not occur for the dependency of G as a function of 32 con=~
sidered here, because the material in this respect is a

"softening one'.

The next section will consider specific situations for
the material designated Type II Variable Modulus Material,
Ref. [3]). The pertinent point lies not in the details of the
solution, but in the fact that there is always a solution,
and that there is just one solution even 1if the possibility

of shocks is included.
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II1 SOLUTIONS FOR SPECIAL CASES.

Typical suitable expressions for the moduli of s0ils have

been obtained for uniaxial and triaxial test results of the
type represented by Figs. 2 and 3, respectively., The ex-

pressions proposed are of the following form.
For initial compressive loading

_ 2
kLD = ko + klekk ¥ k2€kk

For unloading and reloading

= - > k
kyy = k3 = kg3 7 fup

For initial deviatoric loading and reloading

2

Bp = - gll‘J2| T 87y T 83dy

For deviatoric unloading

- AR - 2
Byy =8y * gal le 857; ~ 8671 7 Bpp

All constants ki and 8 are positive. Further, the above
expressions apply for Jl < 0, ekk < 0 and in stress ranges
where all expressions, Eqs. (22)-(25) remain positive. For

the plane case to be studied the value of J2 becomes simply

while Jl remains

J150x+0y+0’z

A number of special problems will now be considered.

(22)

(23)

(24)

(25)

(26)

(27)
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Case A - Shear waves, initial loading.

At the time t = 0, a stressless half-space, Fig. 1, is
subjected to a load T, o while %o S 0. Noting that Eq. (14)
gives U = 0 when x = 0, the boundary condition on the surface

is

T(0) = T, (28)

Further, for large values of x + o, U > o,

T(®) =0 (29)

If a continuous solution exists, Eq. (20),

2
U™ = g;p (30)
must hold. Noting that Jl = 0, s, = 0, Eqs. (24) and (26)
give
2 .
0" = l—gl||.| (31)

This simple relation defines the variation of T as a
function of U in any region where T is not a constant. How-
ever, regions where T is simply constant must also be in-
cluded in the construction of a solution. It is important
that Eq. (31) indicates that if |t| is not a constant it will
increase Lowards the surface where U is smaller. Equation
(31) is therefore suitable for the particular case of loading.
Provided glITl < 1 there will be a point, U1 = 1, where the

shear stress begins to increase, see Fig. 4a. Equation (31)
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describes the solution until the point U2 , defined by

u; = 1 - gll'rol (32)

is reached. For U < U2 the stress T simply remains constant,

so that the solution shown typically in Fig. &4a is obtained.

The relation Eq. (31) being monotonic, it is impossible
to find an alternate continuous solution to savisfy the

- *
boundary condition ).

No solutions containing a discontinuity can be obtained
because the weakening character of the stress-strain relation-

ship in shear, Fig. 3, does not permit discontinuities in

shear.

Case B -~ Shear waves, unloading.

Let the half-~space be initially uniformly stressed by a

shear stress T = L At the instant t = 0 the surface stress
is removed. The boundary conditions are, in this case,
)
T(0) =0
(33)
T(®) = T,
To investigate continuous solutions the reasoning of Case A
applies again, but the expression 8yn of Eq. (25) must now
be used, so that
u? = g, + T (34)
7 84||

*
) It is also not possible to construct alternative, in-
appropriate solutions of the type discussed in Case F.
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8, and g being positive. The relation indicates that IT| in-
creases with U, as required for an unloading case. Figure 4b

shows the solution to be T = To for values U > U, , where

1
v2 > g+ g,1 (35)
1 - °7 4 0
The value T = 0 is reached for U2 = ¢g7 and T remains at this

value for U < U2 .

*
No alternative ) solution involving a shear shock is

possible, because of the "wcakening' stress-strain relation

for unloading in shear shown in Fig. 3.

If a material has a stress-strain relation for unloading
in which the curvature shown in Fig. 3 is reversed, a shear
shock is possible and would give a solution to the problem.
However, in this case the sign of 84 in Eq. (25) would be
negative and there would be no continuous solution possible.
The uniqueness and existence requirement would still be

satisfied.

Case C - Pressure waves, unloading.

Consider the half-space subject to a uniform state of

stress defined by the given value J < 0 and S4o < 0, so

lo
that the normal surface stress is ¢ = s + i J < 0. At
X0 xXo 3 "o
the time t = 0 the surface load is reduced to a fraction, say
no . The boundary conditions in terms of the independent

X0

*)

It is also not possible to construct alternative, in-
appropriate solutions of the type discussed in Case F.
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variable U are

1

sx(O) + Jl(O) = no (36)

w

Xo

sx(w; = S0 <0 (37)

1t
<

J, (=) 10 <0 (38)

The determination of continuous solutions is more com-
plicated than in Cases A and B, because the problem concerns
now two unknown functions Jl and sx , while the earlier cases
concerned only one unknown. As previously stated the differ-~
ential equations (18), (19) permit no other solution than
J1 = coustant, sx = constant and thus Ox = constant, unless
the determinantal equation (21) is satisfied. TIf this is
the case, Eqs. (18) and (19) are inherently equivalent and

only one of them need be retained. It is convenient here

to select Eq. (18)

4g ! _
ok Jl - s, = 0 (39)

which relation is to be solved in conjunction with Eq. (21).

Before considering specific cases some general con-

clusions can be drawn from Eq. (39). The quantities g and k

1 t
are inherently positive, so that J1 and Sy must necessarily

have the same sign. In the problem of unloading considered

1)
here it is therefore inherent that negative values of J1 and

1]
Sy will represent unloading as long us Sy < 0, so that the
unloading relations, Egs. (23) and (25), for k and g are
*)

appropriate “.

X
) If n is sufficiently small, s_ will change in sign and

Eq. (24) w11l be appropriate,x For simplicicy, th's
case i< not pursued here.
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In order to find out if a continuous solution applies in
the present situation, use is made of the fact, stated in the
1 t

previous paragraph, that Jl and Sy have the same sign. 1In

the ase of unloading from negative (compressive) values
J, <90 s, <0 (40)

In addition, unloading implies that the derivatives of the

absolute values satisfy
|Jll‘ >0 stl >0 (41)

The above inequalities can now be used to see if Eq. (21)
permits a continuous solutien. Taking the derivative of

this equation with respect to U one finds the condition
1] t
6U = 3k 4+ 4g > O (42)

The inequality follows from the fact that U is inherently

positive. From Ea. (23)

& eyy) = kg > 0 (43)

c.

- . Y3
Eq. (25) gives, for 7 2 0, the relation Bun = %7 + 5T galsxl -
- gle - g6Ji , so that

4 .3 2 '
TG LA ul TS L I PSP S PR PRI CLY
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While the first two terms are positive the last one is not.
Combining the last three equations the continuous solution

will apply if

2v/3 gblsxl' - Ji (3k, + hgo + 8g ;) > 0 (45)
The first term is inherently positive. The second term is
positive if the expression in parentheses is positive, but
as this depends on the relative magnitude of 8g6J1 <0
compared to 3k4 + 4g5 no general statement can be made.
The above relation investigates the situation on a purely
mathematical basis. The mathematical condition, Eq. (42),
however, expresses simply the fact that the unloading stress-
strain diagram in Fig. 2 has proper curvature as shown. If,
therefore, the value of the material constants give a curve
of this type the mathematical condition, Eq. (45), is in-
herently satisfied and need not be investigated. If the
stress-strain diagram is of this type it is clear, again on
physical grounds, that no (unloading) shock may exist and
the continuous solution of Eqs. (39) and (42) will be the

*)

b
only solution .

To obtain specific solutions when the general relations,

Eqs. (23) and (25), are used, requires numerical solution of

the two Eqs. (39) and (42). However, the principle may be

demonstrated in the special case 85 = 8¢ = 0 vhere a closed

solution can be obtained. In this case g is a function of s

hY

only, while k is a function of Jl only so that Eq. ('%?) can be

% .
) Continuous, but inappropriate solutions of the type dis-
cussed in Case F may occur.
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integrated. With b = -2/3 8,/9k,
g(s.) = [Ck(3)]° (46)
X 1

where C is an open constant. This relation must apply at

the head of the unloading wave U = Ul where Se T Su0 and
Jl = Jlo ,» Which permits the determination of the constant C
1/b
(e¢s, )1
¢ = =%, (47
lo
Substitution of this relation into the determinantal equation
gives
b
2 k)
= < + Sy
3u 3k(Jl) Ag(sxo) K@, ) J (48)
o
Equation (46) may then be usec« to determine Sy
2 k(J)) °
s_ = g(s_ ) —_— - g (49)
X /3 g, X0 k(Jlo) 7

Knowledge of the relation between U and J, and Sy and J

1 1

permits a numerical determination of o as a function of U
in the region U1 to U2 where OY varies. The typical shape

of this stress profile is shown in Fig. 6a.

Case D - Pressure Waves, Loading.

Consider the case of a stressless half~space when at the
time t = 0 a normal surface pressure %o < 0 is applied, while

the shear stress vanishes, T = 0. In terms of the variable U

-
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the boundary conditlons are

ox(o) =0 . (50)
Jy(®) =0
{(51)
s () =0
The procedure for the determination of continuous
solutions, if any, is in principle the same as in Case C,
except that the expression;gLD and kLD have to be used.
In regions of continuous solution Eqs. (18), (19" and the
determinantal equation
2 -
3U° = 4g + 3k (52)

must hold.

The possibility of continuous solutions for the present
case exists only if the Eq. (52) indicates that U decreases

1 t
when J1 < 0, s < 0, while J, < 0, sx < 0, Substitution of

X 1
Egs. (22) and (24) shows that the term k in Eq. (52) has
exactly the opposite behavior, while the second and fourth
terms of g in Eq. (24) change in the direction requirad for
continuous solutions. For high stress levels the bebavior

of k controls, but no full statement can be made withcut in-

troducing specific numbers.

As an alternative to a computational investigation on
the basis of Eqs. (22) and (24) qualitative predictions can

be made based on the character of the uniaxial stress-strain
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diagram implied in these equations. The latter can be used

to find a uniaxial stress-strain diagram which is an approxi-

mation of the actual diagram, Fig. 2. This approximate

diagram, Fig. 5, ought to, and will usually have the same

character as Fig. 2, i.e., it will show a weakening of the

material at low stress ranges up to point C, a hardening

thereafter. The nature of the pressure waves for this
situation is well known, qualitatively. Numerical details
for specific values of the coefficients, Eaqs. (22), (24)

could be obrained from Eqs. (18), (19) and (52).

a. If the value of IG ! 1s less than lo l in Fig. 5
xo | c
the solution is continuous, changing between
points U1 and U2 y .ig. 6b, while the stress is

constant ¢ = C for U < U
X X0 - 2

b. 1f the value of loxoi, Io is larger than lGTI in

al’
Fig. 5, the result will be a shock, Fig. 6c. The
velocity is defined by the slope of the line OA in

Fig. 5. The limiting value |0 is defined by the

d
statement that OT in Fig. 5 is tangent to the stress-

strain diagram at O.

c. for Intermediate stress levels locl <

of < [ox]
there will be a continuous precursor, followed by

a shoeck, The stress level up to which the solution
in continvous ts defined by point D in Fig. 5, while
the shoek veloelty is defined by the slope of the

line Wb,  yne result has the character of Fig. 6d.
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Case E - C(Combined lressure and Shear.

The situation when the applied surface load is a com-
bination of pressure and shear can be discussed in a general
way, and reduced to a combination of the solutions for

pressure and shear alone.

In the case now considered where o, and T must change,
all three differential equations (17), (18) and (19) must be
considered in regions where the solution clanges continuously.
However, the earlier conclusions still hold that T ~an only
change if the determinant, Eq. (20), vanishes, while J1 » 8
and thus Gx can only change if Eq. (21) is satisfied.

Potential solutions can therefore be found in which o, changes

only say from U1 to U2 , while T changes onrly for U3 to Ua s

the determination of the distribution remains as outlined in

Cases A to D.

There is, however, also the additional potential possi-

bility that Egs. (20) and (21)

N
wis

are satisfied simultaneously in a region, U5 to U6 . Noting
that g and k are inherently positive, regardless whether the
expressions g and k for loading, unloading or reloading are

used, the two conditions can not be simultaneously satisfied.

(53)

(54)




o g

e o

- 18 --

There can thus be no region where zll three quantities J1 R
Sy and T change simultaneously. The pieces for construction
of the solution are thus vegions of uniform stress, regions

where T only changes, regions where J S, and thus 0Y

l ’

change, and compressive shocks.

The sequence of the combination of solutions is essentially
the same for all situations, and only one case needs be dis-

cussed. Consider a half-space in which 2t t < 0, the stresses

are =J <0 = < = ve . A
Jl 1o s S, S0 0, 7 T, ¢ rywhere t the
instant t = 0 the surface loads are removed. The boundary

conditions for t > 0 are then

g (0) =0
X (55)
T(0) =0
Jp ) =0,
s _(®) = s (56)
X X0
T(®) = T,
)

Due to the fact that in the region of change of T only

J, changes while J, remains unaffected, the construction of

2 1
a solution can be started with the region of compressive

s U, >U, , U This solution is simply the

1 2 3 4 '

solution tc the problem of pressure relief, when the stress

change U

T, on the surface would be maintained, i.e., Case C treated

before., Let the values of Jl and s, at point U2 found in

this manner be le and Seo
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The changes in stress which will occur between

U3 and U4 < U2 , are then found for the secondary problem

Ux(h) = 1(0) = 0 (57)
Jo (=) = Jy

. _3 .2 .2

~'2<m) =7 Sx2 + To (58)
T(%) = T,

The typical history of the stress is shown in Fig. 7.

It is not posnible to start the solution by determination
of the region of change in shear, and find the pressure change
later. The reason is that the solution must be begun from a
boundary where all quantities J1 » S, » T are known. This
is only true fcr U = =, Egs. (56). At U = 0 only the value of

= = + i e % .
o 3 Jl s, 1is known, not J1 and S, separately

Other :ases lead to appropriate combinations of the
solutions shown in Figs. 4 and 6, which include pressure

shocks.

The reduction of the problem of combined pressure and
shear to a combination of the individual cases implies that
uniqueness and existence found in Cases A-D, automatically

apply here,




oo b

N

e

I b

- 20 --

Case F - Elimination of Multiple Solutions.

In footnotes in Cases A, B and C mention was made of
additional "inappropriate" continuous solutions. The following
will give a typical example and show that such solutions, while
mathematically correct, should be dismissed on physical grounds.
This dismissal is based on the requirement that any solution
containing a singularity, in this case a step discontianuity in
the load at x=t=0, must be obtainable by a limiting process

from a rapidly but monotonically changing surface load.

Consider a variation of Case B of unloading in shear,
where the shear stress on the surface is not completely removed,

but reduced from To to nTo , where 0 < n < 1, The boundary con-

ditions are then

T(0) nt
(59)

T()

n
~

These boundary conditions can be satisfied by using Eq. (34)
for unloading from To to nTo , resulting in the monotonic
stress history ABC shown in Fig. 8a. However, it is also
possible to use Eq. (34) beyond polint B reducing the shear
stress to a lower level, ano < n'l‘o y point Bl in Fig. 8t.
The surface boundary condition can still be satisfied by
obtaining from Eq. (31) a continuous solution where T rises

te the required value nt_ as indicated in Fig. 8b, points clc.
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Points CCl for a continuous solution with a rise in stress are
in the required location, closer to the surface than point B

1
because g < g applies for reloading.
LD UN

In the alternative solution the time history of the stress
at any point is not monotonic. Without going into details, the
concept of characteristics requires that the solution to the
problem of a rapid but gradual change of the surface stress
from To to nT would result in a monotonic stress history. The
solution shown in Fig. 8b is therefore to be dismissed. If
equivalent nonmonotonic results can be constructed for other

problems they are similarly inappropriate.
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v CONCLUSIONS.

The investigation demonstrated that in the simple situ-
ations considered the use of the hysteretic stress-strain
relations proposed in Ref. [3] does not lead to difficulties,
i.e., solutions exist in all cases and are unique. In some
cases uniqueness lIs obtained only by using an additional
physical consideration outlined in Section III, Case F. It
leads to the conclusion that solutions for the problem stated

here are admissable only if the stress changes axe monotonic.

In the case of elastic-plastic materials a similar study
of plane wave propagation was extended to the case of the
superseismic steady~state solution for a step load progressing
on a half-~space. It is expected that the present work can
similarly be extended, thereby providing solutions suitable

to check purely numerical approaches,
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